Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dryland ecosystems cover 40% of our planet's land surface, support billions of people, and are responding rapidly to climate and land use change. These expansive systems also dominate core aspects of Earth's climate, storing and exchanging vast amounts of water, carbon, and energy with the atmosphere. Despite their indispensable ecosystem services and high vulnerability to change, drylands are one of the least understood ecosystem types, partly due to challenges studying their heterogeneous landscapes and misconceptions that drylands are unproductive “wastelands.” Consequently, inadequate understanding of dryland processes has resulted in poor model representation and forecasting capacity, hindering decision making for these at‐risk ecosystems. NASA satellite resources are increasingly available at the higher resolutions needed to enhance understanding of drylands' heterogeneous spatiotemporal dynamics. NASA's Terrestrial Ecology Program solicited proposals for scoping a multi‐year field campaign, of which Adaptation and Response in Drylands (ARID) was one of two scoping studies selected. A primary goal of the scoping study is to gather input from the scientific and data end‐user communities on dryland research gaps and data user needs. Here, we provide an overview of the ARID team's community engagement and how it has guided development of our framework. This includes an ARID kickoff meeting with over 300 participants held in October 2023 at the University of Arizona to gather input from data end‐users and scientists. We also summarize insights gained from hundreds of follow‐up activities, including from a tribal‐engagement focused workshop in New Mexico, conference town halls, intensive roundtables, and international engagements.more » « less
-
Water use efficiency (WUE) is a critical ecosystem function and a key indicator of vegetation responses to drought, yet its temporal trajectories and underlying drivers during drought propagation remain insufficiently understood. Here, we examined the trajectories, interdependencies and drivers of multidimensional WUE metrics and their components (gross primary production (GPP), evapotranspiration, transpiration (T), and canopy conductance (Gc)) using a conceptual drought propagation framework. We found that even though the carbon assimilation efficiency per stomata increases during drought, the canopy‐level WUE (represented by transpiration WUE (TWUE)) declines, indicating that stomatal regulation operates primarily at the leaf level and cannot offset the drought‐induced reduction in WUE at the canopy scale. A stronger dependence on T and TWUE indicates that the water–carbon trade‐off relationship of vegetation more inclines toward water transport than carbon assimilation. Gc fails to prevent the sharp decline in GPP during drought and has limited capacity to suppress T, as reflected by the reduction magnitude and the threshold (the turning point at which a component shifts from a normal to drought‐responsive state). The primary drivers of the water–carbon relationship under drought propagation include vapor pressure deficit and hydraulic traits. Among plant functional types, grasslands show the strongest water–carbon fluxes in response to drought, whereas evergreen broadleaf forests exhibit the weakest response. These findings refine our comprehensive understanding of multidimensional ecosystem functional dynamics under drought propagation and enlighten how the physiological response of vegetation to drought affects the carbon and water cycles.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract. The continental tropics play a leading role in the terrestrial energy,water, and carbon cycles. Land–atmosphere interactions are integral in theregulation of these fluxes across multiple spatial and temporal scales overtropical continents. We review here some of the important characteristics oftropical continental climates and how land–atmosphere interactions regulatethem. Along with a wide range of climates, the tropics manifest a diversearray of land–atmosphere interactions. Broadly speaking, in tropicalrainforest climates, light and energy are typically more limiting thanprecipitation and water supply for photosynthesis and evapotranspiration (ET),whereas in savanna and semi-arid climates, water is the critical regulatorof surface fluxes and land–atmosphere interactions. We discuss the impact ofthe land surface, how it affects shallow and deep clouds, and how theseclouds in turn can feed back to the surface by modulating surface radiationand precipitation. Some results from recent research suggest that shallowclouds may be especially critical to land–atmosphere interactions. On theother hand, the impact of land-surface conditions on deep convection appearsto occur over larger, nonlocal scales and may be a more relevantland–atmosphere feedback mechanism in transitional dry-to-wet regions andclimate regimes.more » « less
An official website of the United States government
